Automated segmentation and evaluation of carotid plaques ultrasound images is of great significance for the diagnosis and early intervention of high-risk groups of cardiovascular and cerebrovascular diseases. However, it remains challenging to develop such solutions due to the relatively low quality of ultrasound images and heterogenous characteristics of carotid plaques. To address those problems, in this paper, we propose a novel deep convolutional neural network, FRDD-Net, with an encoder-decoder architecture to automatically segment carotid plaques. We propose the feature remapping modules (FRMs) and incorporate them into the encoding and decoding blocks to ameliorate the reliability of acquired features. We also propose a new dense decoding mechanism as part of the decoder, thus promoting the utilization efficiency of encoded features. Additionally, we construct a compound loss function to train our network to further enhance its robustness in the face of numerous cases. We train and test our network in multiple carotid plaque ultrasound datasets and our method yields the best performance compared to other state-of-the-art methods. Further ablation studies consistently show the advancement of our proposed architecture.
FRDD-Net: Automated Carotid Plaque Ultrasound Images Segmentation Using Feature Remapping and Dense Decoding.
阅读:3
作者:Li Yanhan, Zou Lian, Xiong Li, Yu Fen, Jiang Hao, Fan Cien, Cheng Mofan, Li Qi
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Jan 24; 22(3):887 |
| doi: | 10.3390/s22030887 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
