Molecular dynamics simulation of aluminum nitride deposition: temperature and N : Al ratio effects.

阅读:3
作者:Zhang Libin, Yan Han, Zhu Guo, Liu Sheng, Gan Zhiyin
Heteroepitaxial growth of aluminum nitride (AIN) has been explored by experiments, but the corresponding growth mechanism is still unrevealed. Here, we use molecular dynamics simulations to study effects of temperature and N : Al flux ratio on deposited AlN. When the temperature increases from 1000 K to 2000 K with an N : Al flux ratio of 2.0, the growth rate of the AlN film decreases. The crystallinity of the deposited AlN is distinctly improved as the temperature increases from 1000 K to 1800 K and it becomes saturated between 1800 K and 2000 K. The crystallinity of the deposited film at 1800 K increases with an increase in the N : Al flux ratio from 0.8 to 2.4, and this degraded a little at an N : Al flux ratio of 2.8. In addition, stoichiometry is closely related to crystallinity of deposited films. Film with good crystallinity is connected with a near 50% N fraction. Furthermore, the average mean biaxial stress and mean normal stress at 1800 K with N : Al flux ratios of 2.0, 2.4 and 2.8 are calculated, indicating that the deposited film with lowest stress has the best crystal quality and the defects appear where stresses occur.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。