The accuracy of insulators and their defect identification by UAVs (unmanned aerial vehicles) in transmission-line inspection needs to be further improved, and the model size of the detection algorithm is significantly reduced to make it more suitable for edge-end deployment. In this paper, the algorithm uses a lightweight GhostNet module to reconstruct the backbone feature extraction network of the YOLOv4 model and employs depthwise separable convolution in the feature fusion layer. The model is lighter on the premise of ensuring the effect of image information extraction. Meanwhile, the ECA-Net channel attention mechanism is embedded into the feature extraction layer and PANet (Path Aggregation Network) to improve the recognition accuracy of the model for small targets. The experimental results show that the size of the improved model is reduced from 244 MB to 42 MB, which is only 17.3% of the original model. At the same time, the mAp of the improved model is 0.77% higher than that of the original model, reaching 95.4%. Moreover, the mAP compared with YOLOv5-s and YOLOX-s, respectively, is improved by 1.98% and 1.29%. Finally, the improved model is deployed into Jetson Xavier NX and run at a speed of 8.8 FPS, which is 4.3 FPS faster than the original model.
A Lightweight Algorithm for Insulator Target Detection and Defect Identification.
阅读:3
作者:Han Gujing, Zhao Liu, Li Qiang, Li Saidian, Wang Ruijie, Yuan Qiwei, He Min, Yang Shiqi, Qin Liang
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Jan 20; 23(3):1216 |
| doi: | 10.3390/s23031216 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
