Automatic Changes Detection between Outdated Building Maps and New VHR Images Based on Pre-Trained Fully Convolutional Feature Maps.

阅读:3
作者:Zhang Yunsheng, Zhu Yaochen, Li Haifeng, Chen Siyang, Peng Jian, Zhao Ling
Detecting changes between the existing building basemaps and newly acquired high spatial resolution remotely sensed (HRS) images is a time-consuming task. This is mainly because of the data labeling and poor performance of hand-crafted features. In this paper, for efficient feature extraction, we propose a fully convolutional feature extractor that is reconstructed from the deep convolutional neural network (DCNN) and pre-trained on the Pascal VOC dataset. Our proposed method extract pixel-wise features, and choose salient features based on a random forest (RF) algorithm using the existing basemaps. A data cleaning method through cross-validation and label-uncertainty estimation is also proposed to select potential correct labels and use them for training an RF classifier to extract the building from new HRS images. The pixel-wise initial classification results are refined based on a superpixel-based graph cuts algorithm and compared to the existing building basemaps to obtain the change map. Experiments with two simulated and three real datasets confirm the effectiveness of our proposed method and indicate high accuracy and low false alarm rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。