Three-dimensional object detection from point cloud data is becoming more and more significant, especially for autonomous driving applications. However, it is difficult for lidar to obtain the complete structure of an object in a real scene due to its scanning characteristics. Although the existing methods have made great progress, most of them ignore the prior information of object structure, such as symmetry. So, in this paper, we use the symmetry of the object to complete the missing part in the point cloud and then detect it. Specifically, we propose a two-stage detection framework. In the first stage, we adopt an encoder-decoder structure to generate the symmetry points of the foreground points and make the symmetry points and the non-empty voxel centers form an enhanced point cloud. In the second stage, the enhanced point cloud is input into the baseline, which is an anchor-based region proposal network, to generate the detection results. Extensive experiments on the challenging KITTI benchmark show the effectiveness of our method, which has better performance on both 3D and BEV (bird's eye view) object detection compared with some previous state-of-the-art methods.
EPGNet: Enhanced Point Cloud Generation for 3D Object Detection.
阅读:3
作者:Chen Qingsheng, Fan Cien, Jin Weizheng, Zou Lian, Li Fangyu, Li Xiaopeng, Jiang Hao, Wu Minyuan, Liu Yifeng
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2020 | 起止号: | 2020 Dec 4; 20(23):6927 |
| doi: | 10.3390/s20236927 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
