A comprehensive study of AFM stiffness measurements on inclined surfaces: theoretical, numerical, and experimental evaluation using a Hertz approach.

阅读:12
作者:Ahmine Anis Nassim, Bdiri Myriam, Féréol Sophie, Fodil Redouane
Atomic Force Microscopy (AFM) is a leading nanoscale technique known for its significant advantages in the analysis of soft materials and biological samples. Traditional AFM data analysis is often based on the Hertz model, which assumes perpendicular indentation of a planar sample. However, this assumption is not always valid due to the varying geometries of soft materials, whether natural, synthetic or biological. In this study, we present a new theoretical model that incorporates correction coefficients into Hertz's model to account for cone-like and spherical probes, and to consider local tilt at the probe-sample interface. We validate our model using finite element analysis (FEA) simulations and experimental AFM measurements on tilted polyacrylamide gels. Our results highlight the need to include local tilt at the probe-sample contact to ensure accurate AFM measurements. This represents a step forward in our understanding of the elastic properties at the surface of soft materials in the broadest sense.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。