A scalable, cost-effective paper-based organic field-effect transistor platform has been developed for rapid antimicrobial susceptibility testing (AST) of biofilm-forming pathogens. Traditional AST methods are costly, labor-intensive, and slow, with a lack of standardized biofilm models. This system directly tracks protons generated by biofilms, which serve as key indicators of bacterial metabolism under antibiotic exposure. A proton-sensitive PEDOT:PSS channel is employed, where metabolic proton activity de-dopes the transistor, reducing conductivity. The engineered paper substrate facilitates rapid, high-quality biofilm formation, improving assay reliability. The platform was validated on three clinically significant pathogens against frontline antibiotics, providing real-time, quantitative antibiotic efficacy profiles. Integrated with a microcontroller and machine learning algorithm, results are displayed on a liquid crystal display (LCD), classifying antibiotic concentration relative to the minimum inhibitory concentration with over 85% accuracy. This clinically translatable system offers a high-throughput, point-of-care solution for efficient infection management and antibiotic stewardship.
Rapid and sensitive antimicrobial susceptibility testing of biofilm-forming bacteria using scalable paper-based organic transistors.
阅读:11
作者:Rafiee Zahra, Rezaie Maryam, Choi Seokheun
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 28; 28(4):112312 |
| doi: | 10.1016/j.isci.2025.112312 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
