Bioengineered Injectable Hydrogel Based on the Dentin Extracellular Matrix and Chitosan.

阅读:5
作者:Arbeed Sajdah, Osman Maya, Gao Feng, Suchy Stephen, Sharmin Zinat, Gasiorowski Joshua Z, Kaminski Amber, Sigar Ira M, Carrilho Marcela R
The extracellular matrix of dentin contains macromolecules of biological value that make it a natural source for the prospection of novel smart biomaterials. Here, we described the development of an injectable thermosensitive smart hydrogel resulting from the blending of insoluble macromolecules of the dentin matrix and chitosan. The extrudability and gelation parameters of the prehydrogel were optimized by varying the concentration of individual components. Three-dimensional constructs were fabricated upon injection of the prehydrogel into custom-made molds, followed by incubation at 37 °C. Specimens were characterized for spectral, physical, morphological, mechanical, and biocompatibility features. Fourier-transform infrared (FTIR) analyses confirmed the integration of the dentin organic matrix and chitosan. The degree of porosity of constructs was ∼51%. The water diffusion of constructs reached a plateau after 2 days. Their moduli of elasticity were at a low MPa order, decreasing after storage in simulated body fluid (SBF). The biodegradability of constructs rose following incubation in SBF containing lysozyme or zinc ions. Hydrogel bioactivity was confirmed by FTIR and ultramorphologically suggested by surface precipitates. Hydrogel constructs were shown to be biocompatible with undifferentiated pulp cells (OD-21). Overall, the novel engineered injectable hydrogel based on dentin extracellular macromolecules and chitosan holds promising features for use as a scaffold for the regeneration of damaged load-bearing tissues like dentin and bone.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。