Degradation stage prediction, which is crucial to monitoring the health condition of rolling bearings, can improve safety and reduce maintenance costs. In this paper, a novel degradation stage prediction method based on hierarchical grey entropy (HGE) and a grey bootstrap Markov chain (GBMC) is presented. Firstly, HGE is proposed as a new entropy that measures complexity, considers the degradation information embedded in both lower- and higher-frequency components and extracts the degradation features of rolling bearings. Then, the HGE values containing degradation information are fed to the prediction model, based on the GBMC, to obtain degradation stage prediction results more accurately. Meanwhile, three parameter indicators, namely the dynamic estimated interval, the reliability of the prediction result and dynamic uncertainty, are employed to evaluate the prediction results from different perspectives. The estimated interval reflects the upper and lower boundaries of the prediction results, the reliability reflects the credibility of the prediction results and the uncertainty reflects the dynamic fluctuation range of the prediction results. Finally, three rolling bearing run-to-failure experiments were conducted consecutively to validate the effectiveness of the proposed method, whose results indicate that HGE is superior to other entropies and the GBMC surpasses other existing rolling bearing degradation prediction methods; the prediction reliabilities are 90.91%, 90% and 83.87%, respectively.
A New Approach to the Degradation Stage Prediction of Rolling Bearings Using Hierarchical Grey Entropy and a Grey Bootstrap Markov Chain.
阅读:4
作者:Cheng Li, Ma Wensuo, Gao Zuobin
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Nov 9; 23(22):9082 |
| doi: | 10.3390/s23229082 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
