The occurrence of genotype by environment interaction (G x E), which is defined as the differential response of genotypes to environmental variation, is frequently reported in maize cultures, making it challenging to recommend cultivars. Methods allowing to study the potential nonlinear pattern of genotype responses to environmental variation allied to prior beliefs on unknown parameters are interesting to evaluate the phenotypic adaptability and stability of genotypes. In this context, the present study aimed to assess the adaptability and stability of maize hybrids, by using the Bayesian segmented regression model, and evaluate the efficacy of using informative and minimally informative prior distributions for the selection of cultivars. Randomized complete-block design experiments were carried out to study the yield (kg/ha) of 25 maize hybrids, in 22 different environments, in Northeastern Brazil. The Bayesian segmented regression model fitted using informative prior distributions presented lower credibility intervals and Deviance Criterium of Information values, compared to those obtained by fitting using minimally informative distributions. Therefore, the model using informative prior distributions was considered for the adaptability and stability evaluation of maize genotypes. Once most northeastern farmers in Brazil have limited capital, the genotype P4285HX should be considered for planting, due to its high yield performance and adaptability to unfavorable environments.
Adaptability and stability evaluation of maize hybrids using Bayesian segmented regression models.
阅读:3
作者:Oliveira Tâmara Rebecca A, Carvalho Hélio Wilson L, Nascimento Moysés, Costa Emiliano Fernandes N, Oliveira Gustavo Hugo F, Gravina Geraldo A, Junior Antonio T Amaral, Filho José Luiz S Carvalho
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2020 | 起止号: | 2020 Jul 30; 15(7):e0236571 |
| doi: | 10.1371/journal.pone.0236571 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
