1-{(E)-[4-(4-Hy-droxy-phen-yl)butan-2-yl-idene]amino}-3-phenyl-thio-urea: crystal structure, Hirshfeld surface analysis and computational study.

阅读:5
作者:Tan Ming Yueh, Kwong Huey Chong, Crouse Karen A, Ravoof Thahira B S A, Tiekink Edward R T
The title thio-urea derivative, C(17)H(19)N(3)OS, adopts a U-shaped conformation with the dihedral angle between the terminal aromatic rings being 73.64†(5)°. The major twist in the mol-ecule occurs about the ethane bond with the C(i)-C(e)-C(e)-C(b) torsion angle being -78.12†(18)°; i = imine, e = ethane and b = benzene. The configuration about the imine bond is E, the N-bound H atoms lie on opposite sides of the mol-ecule and an intra-molecular amine-N-H⋯N(imine) hydrogen bond is evident. In the mol-ecular packing, hydroxyl-O-H⋯S(thione) and amine-N-H⋯O hydrogen bonding feature within a linear, supra-molecular chain. The chains are connected into a layer in the ab plane by a combination of methyl-ene-C-H⋯S(thione), methyl-ene-C-H⋯O(hydrox-yl), methyl-C-H⋯π(phen-yl) and phenyl-C-H⋯π(hy-droxy-benzene) inter-actions. The layers stack without directional inter-actions between them. The analysis of the calculated Hirshfeld surface highlights the presence of weak methyl-C-H⋯O(hydrox-yl) and H⋯H inter-actions in the inter-layer region. Computational chemistry indicates that dispersion energy is the major contributor to the overall stabilization of the mol-ecular packing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。