Humans and all other living things depend on having access to clean water, as it is an indispensable essential resource. Therefore, the development of a model that can predict water quality conditions in the future will have substantial societal and economic value. This can be accomplished by using a model that can predict future water quality circumstances. In this study, we employed a sophisticated artificial neural network (ANN) model. This study intends to develop a hybrid model of single exponential smoothing (SES) with bidirectional long short-term memory (BiLSTM) and an adaptive neurofuzzy inference system (ANFIS) to predict water quality (WQ) in different groundwater in the Al-Baha region of Saudi Arabia. Single exponential smoothing (SES) was employed as a preprocessing method to adjust the weight of the dataset, and the output from SES was processed using the BiLSTM and ANFIS models for predicting water quality. The data were randomly divided into two phases, training (70%) and testing (30%). Efficiency statistics were used to evaluate the SES-BiLSTM and SES-ANFIS models' prediction abilities. The results showed that while both the SES-BiLSTM and SES-ANFIS models performed well in predicting the water quality index (WQI), the SES-BiLSTM model performed best with accuracy (Râ=â99.95% and RMSEâ=â0.00910) at the testing phase, where the performance of the SES-ANFIS model was Râ=â99.95% and RMSEâ=â2.2941âÃâ100-07. The findings support the idea that the SES-BilSTM and SES-ANFIS models can be used to predict the WQI with high accuracy, which will help to enhance WQ. The results demonstrated that the SES-BiLSTM and SES-ANFIS models' forecasts are accurate and that both seasons' performances are consistent. Similar investigations of groundwater quality prediction for drinking purposes should benefit from the proposed SES-BiLSTM and SES-ANFIS models. Consequently, the results demonstrate that the proposed SES-BiLSTM and SES-ANFIS models are useful tools for predicting whether the groundwater in Al-Baha city is suitable for drinking and irrigation purposes.
Groundwater Quality: The Application of Artificial Intelligence.
阅读:5
作者:Al-Adhaileh Mosleh Hmoud, Aldhyani Theyazn H H, Alsaade Fawaz Waselallah, Al-Yaari Mohammed, Albaggar Ali Khalaf Ahmed
| 期刊: | Journal of Environmental and Public Health | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Aug 24; 2022:8425798 |
| doi: | 10.1155/2022/8425798 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
