Surface-enhanced Raman spectroscopy (SERS) is a powerful tool that provides valuable insight into the molecular contents of chemical and biological samples. However, interpreting Raman spectra from complex or dynamic datasets remains challenging, particularly for highly heterogeneous biological samples like extracellular vesicles (EVs). To overcome this, we developed a tunable and interpretable deep autoencoder for the analysis of several challenging Raman spectroscopy applications, including synthetic datasets, chemical mixtures, a chemical milling reaction, and mixtures of EVs. We compared the results with classical methods (PCA and UMAP) to demonstrate the superior performance of the proposed technique. Our method can handle small datasets, provide a high degree of generalization such that it can fill unknown gaps within spectral datasets, and even quantify relative ratios of cell line-derived EVs to fetal bovine serum-derived EVs within mixtures. This simple yet robust approach will greatly improve the analysis capabilities for many other Raman spectroscopy applications.
Deep autoencoder as an interpretable tool for Raman spectroscopy investigation of chemical and extracellular vesicle mixtures.
阅读:7
作者:Kazemzadeh Mohammadrahim, Martinez-Calderon Miguel, Otupiri Robert, Artuyants Anastasiia, Lowe MoiMoi, Ning Xia, Reategui Eduardo, Schultz Zachary D, Xu Weiliang, Blenkiron Cherie, Chamley Lawrence W, Broderick Neil G R, Hisey Colin L
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2024 | 起止号: | 2024 Jun 10; 15(7):4220-4236 |
| doi: | 10.1364/BOE.522376 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
