The intracellular position of genes may impact their expression, but it has not been possible to accurately measure the 3D position of chromosomal loci. In 2D, loci can be tracked using arrays of DNA-binding sites for transcription factors (TFs) fused with fluorescent proteins. However, the same 2D data can result from different 3D trajectories. Here, we have developed a deep learning method for super-resolved astigmatism-based 3D localization of chromosomal loci in live E. coli cells which enables a precision better than 61ânm at a signal-to-background ratio of ~4 on a heterogeneous cell background. Determining the spatial localization of chromosomal loci, we find that some loci are at the periphery of the nucleoid for large parts of the cell cycle. Analyses of individual trajectories reveal that these loci are subdiffusive both longitudinally (x) and radially (r), but that individual loci explore the full radial width on a minute time scale.
Three-dimensional localization and tracking of chromosomal loci throughout the Escherichia coli cell cycle.
阅读:5
作者:Karempudi Praneeth, Gras Konrad, Amselem Elias, Zikrin Spartak, Schirman Dvir, Elf Johan
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2024 | 起止号: | 2024 Nov 5; 7(1):1443 |
| doi: | 10.1038/s42003-024-07155-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
