The increasing production of engineered nanomaterials (ENMs) raises significant concerns about human and environmental exposure, making it essential to understand the mechanisms of their interaction with biological systems to manage the associated risks. To address this, we propose categorizing ENM reactivity using in chemico methodologies. Surface analysis through methanol chemisorption and temperature-programmed surface reaction allows for the determination of reactive surface sites, providing accurate estimates of effective ENM doses in toxicity studies. Additionally, antioxidant consumption assays (dithiothreitol, cysteine, and glutathione) and reactive oxygen species (ROS) generation assays (RNO and DCFH(2)-DA) are employed to rank the oxidative potential of ENM surface sites in a cell-free environment. Our study confirms the classification of ZnO NM-110, ZnO NM-111, CuO, and carbon black as highly oxidant ENMs, while TiO(2) NM-101 and NM-105 exhibit low oxidative potential due to their acidic surface sites. In contrast, CeO(2) NM-211 and NM-212 demonstrate redox surface sites. SiO(2) nanomaterials (NM-200 and NM-201) are shown to be inert, with low oxidation rates and minimal reactive surface density, despite their high surface area. Quantifying reactive surface sites offers a refined dose metric for assessing ENM toxicity, advancing safe-by-design nanomaterial development.
A refined dose metric for nanotoxicology based on surface site reactivity for oxidative potential of engineered nanomaterials.
阅读:10
作者:Alcolea-Rodriguez Victor, Simeone Felice C, Dumit Verónica I, Faccani Lara, Toledo Victoria, Haase Andrea, Coca-López Nicolas, Portela Raquel, Bañares Miguel A
| 期刊: | Nanoscale Advances | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Feb 26; 7(10):2929-2941 |
| doi: | 10.1039/d5na00104h | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
