MOTIVATION: Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory mechanisms. However, computational modeling of scATAC-seq data is challenging due to its high dimension, extreme sparsity, complex dependencies and high sensitivity to confounding factors from various sources. RESULTS: Here, we propose a new deep generative model framework, named SAILER, for analyzing scATAC-seq data. SAILER aims to learn a low-dimensional nonlinear latent representation of each cell that defines its intrinsic chromatin state, invariant to extrinsic confounding factors like read depth and batch effects. SAILER adopts the conventional encoder-decoder framework to learn the latent representation but imposes additional constraints to ensure the independence of the learned representations from the confounding factors. Experimental results on both simulated and real scATAC-seq datasets demonstrate that SAILER learns better and biologically more meaningful representations of cells than other methods. Its noise-free cell embeddings bring in significant benefits in downstream analyses: clustering and imputation based on SAILER result in 6.9% and 18.5% improvements over existing methods, respectively. Moreover, because no matrix factorization is involved, SAILER can easily scale to process millions of cells. We implemented SAILER into a software package, freely available to all for large-scale scATAC-seq data analysis. AVAILABILITY AND IMPLEMENTATION: The software is publicly available at https://github.com/uci-cbcl/SAILER. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
SAILER: scalable and accurate invariant representation learning for single-cell ATAC-seq processing and integration.
阅读:4
作者:Cao Yingxin, Fu Laiyi, Wu Jie, Peng Qinke, Nie Qing, Zhang Jing, Xie Xiaohui
| 期刊: | Bioinformatics | 影响因子: | 5.400 |
| 时间: | 2021 | 起止号: | 2021 Jul 12; 37(Suppl_1):i317-i326 |
| doi: | 10.1093/bioinformatics/btab303 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
