In the present study, green synthesis of silver nanoparticles (VNE-AgNPs) via Verbascum nudatum extract was carried out for the first time. The synthesized AgNPs were characterized by different spectral methods such as UV-vis, FTIR, XRD, TEM, and EDAX. According to TEM analyses, the average size range of AgNPs was 17-21 nm, and the dominant peaks in the 111°, 200°, 221°, and 311° planes in the XRD pattern indicated the Ag-NPs FCC crystal structure. FTIR data showed that VNE-AgNPs interacted with many reducing, capping, and stabilizing phytochemicals during green synthesis. VNE-AgNPs had higher antibacterial activity against S. aureus and E. coli bacterial strains with a maximum inhibition zone of 21 and 18 mm, respectively, than penicillin 5 IU, used as a positive control in the study. The cytotoxic effect of VNE-AgNPs appeared at a concentration of 50 µg/mL in L929 cells and 5 µg/mL in cancer (A549) cells. When the impact of VNE-AgNPs and C-AgNPs on inflammation was compared, it was found that VNE-AgNPs increased TNF-α levels (333.45â±â67.20 ng/mg-protein) statistically (pâ<â0.05) more than TNF-α levels (256.92â±â27.88 ng/mg-protein) in cells treated with C-AgNPs. VNE-Ag-NPs were found to have a degradation efficiency of 65% against methylene blue (MB) dye within 3 h.
Environmentally friendly silver nanoparticles synthesized from Verbascum nudatum var. extract and evaluation of its versatile biological properties and dye degradation activity.
阅读:4
作者:Hazman Ãmer, Khamidov Gofur, Yilmaz Mustafa Abdullah, Bozkurt Mehmet Fatih, KargioÄlu Mustafa, Tukhtaev Davlat, Erol Ibrahim
| 期刊: | Environmental Science and Pollution Research | 影响因子: | 0.000 |
| 时间: | 2024 | 起止号: | 2024 May;31(23):33482-33494 |
| doi: | 10.1007/s11356-024-33424-5 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
