The COVID-19 pandemic has been widely spread and affected millions of people and caused hundreds of deaths worldwide, especially in patients with comorbilities and COVID-19. This manuscript aims to present models to predict, firstly, the number of coronavirus cases and secondly, the hospital care demand and mortality based on COVID-19 patients who have been diagnosed with other diseases. For the first part, I present a projection of the spread of coronavirus in Mexico, which is based on a contact tracing model using Bayesian inference. I investigate the health profile of individuals diagnosed with coronavirus to predict their type of patient care (inpatient or outpatient) and survival. Specifically, I analyze the comorbidity associated with coronavirus using Machine Learning. I have implemented two classifiers: I use the first classifier to predict the type of care procedure that a person diagnosed with coronavirus presenting chronic diseases will obtain (i.e. outpatient or hospitalised), in this way I estimate the hospital care demand; I use the second classifier to predict the survival or mortality of the patient (i.e. survived or deceased). I present two techniques to deal with these kinds of unbalanced datasets related to outpatient/hospitalised and survived/deceased cases (which occur in general for these types of coronavirus datasets) to obtain a better performance for the classification.
Current forecast of COVID-19 in Mexico: A Bayesian and machine learning approaches.
阅读:5
作者:Prieto, Kernel
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2022 | 起止号: | 2022 Jan 21; 17(1):e0259958 |
| doi: | 10.1371/journal.pone.0259958 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
