Forecasting stock prices with long-short term memory neural network based on attention mechanism.

阅读:3
作者:Qiu Jiayu, Wang Bin, Zhou Changjun
The stock market is known for its extreme complexity and volatility, and people are always looking for an accurate and effective way to guide stock trading. Long short-term memory (LSTM) neural networks are developed by recurrent neural networks (RNN) and have significant application value in many fields. In addition, LSTM avoids long-term dependence issues due to its unique storage unit structure, and it helps predict financial time series. Based on LSTM and an attention mechanism, a wavelet transform is used to denoise historical stock data, extract and train its features, and establish the prediction model of a stock price. We compared the results with the other three models, including the LSTM model, the LSTM model with wavelet denoising and the gated recurrent unit(GRU) neural network model on S&P 500, DJIA, HSI datasets. Results from experiments on the S&P 500 and DJIA datasets show that the coefficient of determination of the attention-based LSTM model is both higher than 0.94, and the mean square error of our model is both lower than 0.05.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。