Birefringence imaging, including polarization sensitive optical coherence tomography (PS-OCT), can provide valuable insight into the microscopic structure and organization of many biological tissues. In this paper, we report on a method to fabricate tissue-like birefringence phantoms for such imaging modalities. We utilize the photo-elastic effect, wherein birefringence is induced by stretching a polymer sample after heating it above its glass-transition temperature. The cooled samples stably exhibit homogeneous birefringence, and were assembled into phantoms containing multiple well-defined regions of distinct birefringence. We present planar slab phantoms for microscopy applications and cylindrical phantoms for catheter-based imaging and demonstrate quantitative analysis of the birefringence within individual regions of interest. Birefringence phantoms enable testing, validating, calibrating, and improving PS-OCT acquisition systems and reconstruction strategies.
Tissue-like phantoms for quantitative birefringence imaging.
阅读:5
作者:Liu Xinyu, Beaudette Kathy, Wang Xianghong, Liu Linbo, Bouma Brett E, Villiger Martin
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2017 | 起止号: | 2017 Sep 12; 8(10):4454-4465 |
| doi: | 10.1364/BOE.8.004454 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
