Microtensiometer for Confocal Microscopy Visualization of Dynamic Interfaces.

阅读:4
作者:Iasella Steven V, Barman Sourav, Ciutara Clara, Huang Boxun, Davidson Michael L, Zasadzinski Joseph A
Adsorption of surface-active molecules to fluid-fluid interfaces is ubiquitous in nature. Characterizing these interfaces requires measuring surfactant adsorption rates, evaluating equilibrium surface tensions as a function of bulk surfactant concentration, and relating how surface tension changes with changes in the interfacial area following equilibration. Simultaneous visualization of the interface using fluorescence imaging with a high-speed confocal microscope allows the direct evaluation of structure-function relationships. In the capillary pressure microtensiometer (CPM), a hemispherical air bubble is pinned at the end of the capillary in a 1 mL volume liquid reservoir. The capillary pressure across the bubble interface is controlled via a commercial microfluidic flow controller that allows for model-based pressure, bubble curvature, or bubble area control based on the Laplace equation. Compared to previous techniques such as the Langmuir trough and pendant drop, the measurement and control precision and response time are greatly enhanced; capillary pressure variations can be applied and controlled in milliseconds. The dynamic response of the bubble interface is visualized via a second optical lens as the bubble expands and contracts. The bubble contour is fit to a circular profile to determine the bubble curvature radius, R, as well as any deviations from circularity that would invalidate the results. The Laplace equation is used to determine the dynamic surface tension of the interface. Following equilibration, small pressure oscillations can be imposed by the computer-controlled microfluidic pump to oscillate the bubble radius (frequencies of 0.001-100 cycles/min) to determine the dilatational modulus The overall dimensions of the system are sufficiently small that the microtensiometer fits under the lens of a high-speed confocal microscope allowing fluorescently tagged chemical species to be quantitatively tracked with submicron lateral resolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。