Generalized focused-ion-beam milling strategy to tune mechanical properties of AFM cantilevers for single-molecule force spectroscopy studies.

阅读:5
作者:Hatchell Christopher B, Jacobson David R
Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) enables the characterization of individual biological molecules through the application of mechanical force. The spatiotemporal resolution of such measurements depends greatly on the AFM cantilever that is used, specifically its stiffness, hydrodynamic drag, and material composition. Prior work has shown that focused ion beam (FIB) lithographic modification of small cantilevers can be used to lower the spring constant (and thus force noise) and drift while maintaining a relatively fast time response. Published methods for implementing such optimization rely on specific FIB instruments and cantilever types, limiting broad implementation of these methods to improve SMFS data quality. Here, we show that it is possible to achieve such optimized properties using generalized techniques applicable to a broader array of FIB instruments and starting from new types of cantilevers that are presently commercially available. Modified cantilevers exhibited a 90% reduction in spring constant, sub-pN force drift to tens of seconds, and a time response of ∼25 μs in the liquid environment relevant to biological measurements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。