The widespread use of plasmonic nanorulers (PNRs) in sensing platforms has been plagued by technical challenges associated with the development of methods to fabricate precisely controlled nanostructures with high yield and characterize them with high throughput. We have previously shown that creating PNRs in a nanoparticle-film (NP-film) format enables the fabrication of an extremely large population of uniform PNRs with 100% yield using a self-assembly approach, which facilitates high-throughput PNR characterization using ensemble spectroscopic measurements and eliminates the need for expensive microscopy systems required by many other PNR platforms. We expand upon this prior work herein, showing that the NP-film PNR can be made compatible with aqueous sensing studies by adapting it for use in a transmission localized surface plasmon resonance spectroscopy format, where the coupled NP-film resonance responsible for the PNR signal is directly probed using an extinction measurement from a standard spectrophotometer. We designed slide holders that fit inside standard spectrophotometer cuvettes and position NP-film samples so that the coupled NP-film resonance can be detected in a collinear optical configuration. Once the NP-film PNR samples are cuvette-compatible, it is straightforward to calibrate the PNR in aqueous solution and use it to characterize dynamic, angstrom-scale distance changes resulting from pH-induced swelling of polyelectrolyte (PE) spacer layers as thin as 1 PE layer and also of a self-assembled monolayer of an amine-terminated alkanethiol. This development is an important step toward making PNR sensors more user-friendly and encouraging their widespread use in various sensing schemes.
Nanoparticle-Film Plasmon Ruler Interrogated with Transmission Visible Spectroscopy.
阅读:3
作者:Hill Ryan T, Kozek Klaudia M, Hucknall Angus, Smith David R, Chilkoti Ashutosh
| 期刊: | ACS Photonics | 影响因子: | 6.700 |
| 时间: | 2014 | 起止号: | 2014 Oct 15; 1(10):974-984 |
| doi: | 10.1021/ph500190q | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
