Bending impact on the performance of a flexible Li(4)Ti(5)O(12)-based all-solid-state thin-film battery.

阅读:5
作者:Sepúlveda Alfonso, Speulmanns Jan, Vereecken Philippe M
The growing demand of flexible electronic devices is increasing the requirements of their power sources. The effect of bending in thin-film batteries is still not well understood. Here, we successfully developed a high active area flexible all-solid-state battery as a model system that consists of thin-film layers of Li(4)Ti(5)O(12), LiPON, and Lithium deposited on a novel flexible ceramic substrate. A systematic study on the bending state and performance of the battery is presented. The battery withstands bending radii of at least 14 mm achieving 70% of the theoretical capacity. Here, we reveal that convex bending has a positive effect on battery capacity showing an average increase of 5.5%, whereas concave bending decreases the capacity by 4% in contrast with recent studies. We show that the change in capacity upon bending may well be associated to the Li-ion diffusion kinetic change through the electrode when different external forces are applied. Finally, an encapsulation scheme is presented allowing sufficient bending of the device and operation for at least 500 cycles in air. The results are meant to improve the understanding of the phenomena present in thin-film batteries while undergoing bending rather than showing improvements in battery performance and lifetime.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。