Comparative transcriptomic data confirm the findings of dehydration stress-induced redox biology of indigenous aromatic rice cultivars.

阅读:2
作者:Dey Nivedita, Bhattacharjee Soumen
The present work compares the transcriptome data sets of post-imbibitional dehydration stress-raised seedlings of two contrasting indigenous aromatic rice cultivars (Oryza sativa L., Cultivars Jamainadu and Badshabhog) for unfolding genetic regulation of dehydration stress. The result of RNA-seq analysis in Illumina platform in general revealed significant cultivar-specific expression of genes under dehydration stress that substantiate the data of redox metabolic fingerprints (assessed in terms of differential efficacy of ascorbate-glutathione pathway, ROS-antioxidant interaction dynamics and sensitive biomarkers of oxidative stress). Both the cultivars showed a diverse global transcriptomic response under water-deficit condition. Transcripts selected for heatmap generation with proper annotation revealed genes that are significantly expressed and mainly involved in redox functions, signaling, membrane trafficking, replication, protein synthesis, etc. Gene ontology (GO) analysis proposed that dehydration stress in the drought-tolerant cultivar Badshabhog was attributable to the enhanced expression of genes associated with carbon dioxide-concentrating mechanism, peroxysomal biogenesis, protein modification, protein synthesis, mitochondrial electron transport chain functioning, intercellular protein transport, histone demethylation associated with developmental process, regulation of apoptosis, etc. The redox genes that got significantly over-expressed in the IARC Badshabhog vis-à-vis Jamainadu include l-ascorbate oxidase/peroxidase, monothiol glutaredoxin-S1, thioredoxin-like protein AAED1 (chloroplastic), thioredoxin-like protein CXXS1, NADH-dehydrogenase (ubiquinone)-1-beta subcomplex subunit 3-B, NADH-dehydrogenase subunit 6 and K, lipoxygenase 6 isoform-XI, etc. Overall, the results of the RNA-seq analysis led to the identification of cultivar-specific genes, with the cultivar Badshabhog exhibiting significantly greater molecular reprogramming for redox regulation and signaling necessary for combating dehydration stress. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03829-z.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。