Complexity analysis with chaos control: A discretized ratio-dependent Holling-Tanner predator-prey model with Fear effect in prey population.

阅读:7
作者:Mutakabbir Khan Md, Jasim Uddin Md
This study explores a novel two-dimensional discrete-time ratio-dependent Holling-Tanner predator-prey model, incorporating the impact of the Fear effect on the prey population. The study focuses on identifying stationary points and analyzing bifurcations around the positive fixed point, with an emphasis on their biological significance. Our examination of bifurcations at the interior fixed point uncovers a variety of generic bifurcations, including one-parameter bifurcations, period-doubling, and Neimark-Sacker bifurcations. To further understand NS bifurcation, we establish non-degeneracy condition. The system's bifurcating and fluctuating behavior is managed using Ott-Grebogi-Yorke (OGY) control technique. From an ecological perspective, these findings underscore the substantial role of the Fear effect in shaping predator-prey dynamics. The research is extended to a networked context, where interconnected prey-predator populations demonstrate the influence of coupling strength and network structure on the system's dynamics. The theoretical results are validated through numerical simulations, which encompass local dynamical classifications, calculations of maximum Lyapunov exponents, phase portrait analyses, and bifurcation diagrams.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。