Myosin VI and its interacting protein LMTK2 regulate tubule formation and transport to the endocytic recycling compartment.

阅读:4
作者:Chibalina Margarita V, Seaman Matthew N J, Miller Christopher C, Kendrick-Jones John, Buss Folma
Myosin VI is an actin-based retrograde motor protein that plays a crucial role in both endocytic and secretory membrane trafficking pathways. Myosin VI's targeting to and function in these intracellular pathways is mediated by a number of specific binding partners. In this paper we have identified a new myosin-VI-binding partner, lemur tyrosine kinase 2 (LMTK2), which is the first transmembrane protein and kinase that directly binds to myosin VI. LMTK2 binds to the WWY site in the C-terminal myosin VI tail, the same site as the endocytic adaptor protein Dab2. When either myosin VI or LMTK2 is depleted by siRNAs, the transferrin receptor (TfR) is trapped in swollen endosomes and tubule formation in the endocytic recycling pathway is dramatically reduced, showing that both proteins are required for the transport of cargo, such as the TfR, from early endosomes to the endocytic recycling compartment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。