Tuning attention based long-short term memory neural networks for Parkinson's disease detection using modified metaheuristics.

阅读:4
作者:Cuk Aleksa, Bezdan Timea, Jovanovic Luka, Antonijevic Milos, Stankovic Milos, Simic Vladimir, Zivkovic Miodrag, Bacanin Nebojsa
Parkinson's disease (PD) is a progressively debilitating neurodegenerative disorder that primarily affects the dopaminergic system in the basal ganglia, impacting millions of individuals globally. The clinical manifestations of the disease include resting tremors, muscle rigidity, bradykinesia, and postural instability. Diagnosis relies mainly on clinical evaluation, lacking reliable diagnostic tests and being inherently imprecise and subjective. Early detection of PD is crucial for initiating treatments that, while unable to cure the chronic condition, can enhance the life quality of patients and alleviate symptoms. This study explores the potential of utilizing long-short term memory neural networks (LSTM) with attention mechanisms to detect Parkinson's disease based on dual-task walking test data. Given that the performance of networks is significantly inductance by architecture and training parameter choices, a modified version of the recently introduced crayfish optimization algorithm (COA) is proposed, specifically tailored to the requirements of this investigation. The proposed optimizer is assessed on a publicly accessible real-world clinical gait in Parkinson's disease dataset, and the results demonstrate its promise, achieving an accuracy of 87.4187 % for the best-constructed models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。