Significant research to define and standardize terminologies for describing stacks of atomic layers in bulk graphene materials has been undertaken. Most methods to measure the stacking characteristics are time consuming and are not suited for obtaining information by directly imaging dispersions. Conventional optical microscopy has difficulty in identifying the size and thickness of a few layers of graphene stacks due to their low photon absorption capacity. Utilizing a contrast based on anisotropic refractive index in 2D materials, it is shown that localized thickness-specific information can be captured in birefringence images of graphene dispersions. Coupling pixel-by-pixel information from brightfield and birefringence images and using unsupervised statistical learning algorithms, three unique data clusters representing flakes (unexfoliated), nanoplatelets (partially exfoliated), and 2D sheets (well-exfoliated) species in various laboratory-based and commercial dispersions of graphene and graphene oxide are identified. The high-throughput, multitasking capability of the approach to classify stacking at sub-nanometer to micrometer scale and measure the size, thickness, and concentration of exfoliated-species in generic dispersions of graphene/graphene oxide are demonstrated. The method, at its current stage, requires less than half an hour to quantitatively assess one sample of graphene/graphene oxide dispersion.
A High Throughput and Unbiased Machine Learning Approach for Classification of Graphene Dispersions.
阅读:4
作者:Abedin Md Joynul, Barua Titon, Shaibani Mahdokht, Majumder Mainak
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2020 | 起止号: | 2020 Aug 25; 7(20):2001600 |
| doi: | 10.1002/advs.202001600 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
