Syncope is a medical condition resulting in the spontaneous transient loss of consciousness and postural tone with spontaneous recovery. The diagnosis of syncope is a challenging task, as similar types of symptoms are observed in seizures, vertigo, stroke, coma, etc. The advent of Healthcare 4.0, which facilitates the usage of artificial intelligence and big data, has been widely used for diagnosing various diseases based on past historical data. In this paper, classification-based machine learning is used to diagnose syncope based on data collected through a head-up tilt test carried out in a purely clinical setting. This work is concerned with the use of classification techniques for diagnosing neurally mediated syncope triggered by a number of neurocardiogenic or cardiac-related factors. Experimental results show the effectiveness of using classification-based machine learning techniques for an early diagnosis and proactive treatment of neurally mediated syncope.
Diagnosing Neurally Mediated Syncope Using Classification Techniques.
阅读:4
作者:Hussain Shahadat, Raza Zahid, Kumar T V Vijay, Goswami Nandu
| 期刊: | Journal of Clinical Medicine | 影响因子: | 2.900 |
| 时间: | 2021 | 起止号: | 2021 Oct 28; 10(21):5016 |
| doi: | 10.3390/jcm10215016 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
