Lung inflammation changes and oxidative stress induced by cigarette smoke exposure in guinea pigs affected by Zataria multiflora and its constituent, carvacrol.

阅读:4
作者:Boskabady Mohammad Hossein, Gholami Mahtaj Leila
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an epidemic and progressive health problem which is mainly a consequence of cigarette smoking, and associated with lung inflammation. Anti-inflammatory property of Zataria multiflora (Z. multiflora) and its constituent, carvacrol was shown in various inflammatory disorders previously. Therefore, in the present study, the effects of the plant and its constituent, carvacrol, on lung inflammation changes and oxidative stress, in guinea pigs model of COPD were evaluated. METHODS: Nine groups of animals including control, COPD, COPD + drinking water containing three concentrations of extract of Z. multiflora (0.4, 0.8, and 1.6 mg/mL), COPD + drinking water containing three concentrations of carvacrol (60, 120, and 240 μg/mL), and COPD + dexamethasone (50 μg/mL) were studied. For inducing COPD, animals were exposed to cigarette smoke for 3 months. Thiol groups, IL-8, total and differential WBC were measured in broncho-alveolar lavage fluid (BALF) (n = 6 for each group). RESULTS: Total WBC, eosinophils, and neutrophils counts as well as the levels of IL-8 in BALF were significantly increased but thiol group was decreased in COPD compared to the control group (p < 0.05 to p < 0.001). Total WBC and IL-8 in all treated COPD groups, thiol group, eosinophils and neutrophils counts in treated groups with dexamethasone and two higher concentrations of the Z. multiflora and carvacrol were significantly improved compared to non-treated COPD group (p < 0.05 to p < 0.001). Lymphocyte count in treated groups with dexamethasone, highest concentration of Z. multiflora, and two higher concentration of carvacrol was also significantly higher than non-treated group (p < 0.05 to p < 0.001). CONCLUSIONS: A preventive effect of Z. multiflora extract and its constituent carvacrol on lung inflammation changes and oxidative stress in animal model of COPD was suggested.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。