Performance of Flexible Chemoresistive Gas Sensors after Having Undergone Automated Bending Tests.

阅读:3
作者:Alvarado Miriam, La Flor Silvia De, Llobet Eduard, Romero Alfonso, Ramírez José Luis
Many sensors are developed over flexible substrates to be used as wearables, which does not guarantee that they will actually withstand being bent. This work evaluates the gas sensing performance of metal oxide devices of three different types, before and after having undergone automated, repetitive bending tests. These tests were aimed at demonstrating that the fabricated sensors were actually flexible, which cannot be taken for granted beforehand. The active layer in these sensors consisted of WO(3) nanowires (NWs) grown directly over a Kapton foil by means of the aerosol-assisted chemical vapor deposition. Their response to different H(2) concentrations was measured at first. Then, they were cyclically bent, and finally, their response to H(2) was measured again. Sensors based on pristine WO(3)-NWs over Ag electrodes and on Pd-decorated NWs over Au electrodes maintained their performance after having been bent. Ag electrodes covered with Pd-decorated NWs became fragile and lost their usefulness. To summarize, two different types of truly flexible metal oxide gas sensor were fabricated, whereas a third one was not flexible, despite being grown over a flexible substrate following the same method. Finally, we recommend that one standard bending test procedure should be established to clearly determine the flexibility of a sensor considering its intended application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。