INTRODUCTION: Mental health monitoring utilizing EEG analysis has garnered notable interest due to the non-invasive characteristics and rich temporal information encoded in EEG signals, which are indicative of cognitive and emotional conditions. Conventional methods for EEG-based mental health evaluation often depend on manually crafted features or basic machine learning approaches, like support vector classifiers or superficial neural networks. Despite the potential of these approaches, they often fall short in capturing the intricate spatiotemporal relationships within EEG data, leading to lower classification accuracy and poor adaptability across various populations and mental health scenarios. METHODS: To overcome these limitations, we introduce the EEG Mind-Transformer, an innovative deep learning architecture composed of a Dynamic Temporal Graph Attention Mechanism (DT-GAM), a Hierarchical Graph Representation and Analysis (HGRA) module, and a Spatial-Temporal Fusion Module (STFM). The DT-GAM is designed to dynamically extract temporal dependencies within EEG data, while the HGRA models the brain's hierarchical structure to capture both localized and global interactions among different brain regions. The STFM synthesizes spatial and temporal elements, generating a comprehensive representation of EEG signals. RESULTS AND DISCUSSION: Our empirical results confirm that the EEG Mind-Transformer significantly surpasses conventional approaches, achieving an accuracy of 92.5%, a recall of 91.3%, an F1-score of 90.8%, and an AUC of 94.2% across several datasets. These findings underline the model's robustness and its generalizability to diverse mental health conditions. Moreover, the EEG Mind-Transformer not only pushes the boundaries of state-of-the-art EEG-based mental health monitoring but also offers meaningful insights into the underlying brain functions associated with mental disorders, solidifying its value for both research and clinical settings.
Leveraging deep learning for robust EEG analysis in mental health monitoring.
阅读:4
作者:Liu Zixiang, Zhao Juan
| 期刊: | Frontiers in Neuroinformatics | 影响因子: | 2.500 |
| 时间: | 2024 | 起止号: | 2025 Jan 3; 18:1494970 |
| doi: | 10.3389/fninf.2024.1494970 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
