Changes in EEG multiscale entropy and power-law frequency scaling during the human sleep cycle.

阅读:3
作者:Miskovic Vladimir, MacDonald Kevin J, Rhodes L Jack, Cote Kimberly A
We explored changes in multiscale brain signal complexity and power-law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate-based tests of nonlinearity we also examined whether any of the sleep stage-dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time-scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。