INTRODUCTION: To evaluate the viability of a muscle tissue, it is essential to measure the tissue's contractile performance as well as to control its structure. Accurate contractility data can aid in development of more effective and safer drugs. This can be accomplished with a robust in vitro contractility assay applicable to various types of muscle tissue. METHODS: The devices developed in this work were based on the muscular thin film (MTF) technology, in which an elastic film is manufactured with a 2D engineered muscle tissue on one side. The tissue template is made by patterning extracellular matrix with microcontact printing. When muscle cells are seeded on the film, they self-organize with respect to the geometric cues in the matrix to form a tissue. RESULTS: Several assays based on the "MTF on a chip" technology are demonstrated. One such assay incorporates the contractility assay with striated muscle into a fluidic channel. Another assay platform incorporates the MTFs in a multi-well plate, which is compatible with automated data collection and analysis. Finally, we demonstrate the possibility of analyzing contractility of both striated and smooth muscle simultaneously on the same chip. DISCUSSION: In this work, we assembled an ensemble of contractility assays for striated and smooth muscle based on muscular thin films. Our results suggest an improvement over current methods and an alternative to isolated tissue preparations. Our technology is amenable to both primary harvests cells and cell lines, as well as both human and animal tissues.
Muscle on a chip: in vitro contractility assays for smooth and striated muscle.
阅读:4
作者:Grosberg Anna, Nesmith Alexander P, Goss Josue A, Brigham Mark D, McCain Megan L, Parker Kevin Kit
| 期刊: | Journal of Pharmacological and Toxicological Methods | 影响因子: | 1.800 |
| 时间: | 2012 | 起止号: | 2012 May-Jun;65(3):126-35 |
| doi: | 10.1016/j.vascn.2012.04.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
