Kinetic and molecular docking studies were performed to characterize the binding of α-d-glucose 1-phosphate (αGlc 1-P) at the catalytic subsite of a family GH-13 sucrose phosphorylase (from L. mesenteroides) in wild-type and mutated form. The best-fit binding mode of αGlc 1-P dianion had the phosphate group placed anti relative to the glucosyl moiety (adopting a relaxed (4)C(1) chair conformation) and was stabilized mainly by hydrogen bonds from residues of the enzyme׳s catalytic triad (Asp(196), Glu(237) and Asp(295)) and from Arg(137). Additional feature of the αGlc 1-P docking pose was an intramolecular hydrogen bond (2.7 à ) between the glucosyl C2-hydroxyl and the phosphate oxygen. An inactive phosphonate analog of αGlc 1-P did not show binding to sucrose phosphorylase in different experimental assays (saturation transfer difference NMR, steady-state reversible inhibition), consistent with evidence from molecular docking study that also suggested a completely different and strongly disfavored binding mode of the analog as compared to αGlc 1-P. Molecular docking results also support kinetic data in showing that mutation of Phe(52), a key residue at the catalytic subsite involved in transition state stabilization, had little effect on the ground-state binding of αGlc 1-P by the phosphorylase. However, when combined with a second mutation involving one of the catalytic triad residues, the mutation of Phe(52) by Ala caused complete (F52A_D196A; F52A_E237A) or very large (F52A_D295A) disruption of the proposed productive binding mode of αGlc 1-P with consequent effects on the enzyme activity. Effects of positioning of αGlc 1-P for efficient glucosyl transfer from phosphate to the catalytic nucleophile of the enzyme (Asp(196)) are suggested. High similarity between the αGlc 1-P conformers bound to sucrose phosphorylase (modeled) and the structurally and mechanistically unrelated maltodextrin phosphorylase (experimental) is revealed.
Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase.
阅读:4
作者:Wildberger Patricia, Aish Gaia A, Jakeman David L, Brecker Lothar, Nidetzky Bernd
| 期刊: | Biochemistry and Biophysics Reports | 影响因子: | 2.200 |
| 时间: | 2015 | 起止号: | 2015 Apr 17; 2:36-44 |
| doi: | 10.1016/j.bbrep.2015.04.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
