The signals from electromyography (EMG) have been used for volitional control of robotic assistive devices with the challenges of performance improvement. Currently, the most common method of EMG signal processing for robot control is RMS (root mean square)-based algorithm, but system performance accuracy can be affected by noise or artifacts. This study hypothesized that the frequency bandwidths of noise and artifacts are beyond the main EMG signal frequency bandwidth, hence the fixed-bandwidth frequency-domain signal processing methods can filter off the noise and artifacts only by processing the main frequency bandwidth of EMG signals for robot control. The purpose of this study was to develop a cost-effective embedded system and short-time Fourier transform (STFT) method for an EMG-controlled robotic hand. Healthy volunteers were recruited in this study to identify the optimal myoelectric signal frequency bandwidth of muscle contractions. The STFT embedded system was developed using the STM32 microcontroller unit (MCU). The performance of the STFT embedded system was compared with RMS embedded system. The results showed that the optimal myoelectric signal frequency band responding to muscle contractions was between 60 and 80 Hz. The STFT embedded system was more stable than the RMS embedded system in detecting muscle contraction. Onsite calibration was required for RMS embedded system. The average accuracy of the STFT embedded system is 91.55%. This study presents a novel approach for developing a cost-effective and less complex embedded myoelectric signal processing system for robot control.
A Real-Time EMG-Based Fixed-Bandwidth Frequency-Domain Embedded System for Robotic Hand.
阅读:5
作者:Chen Biao, Chen Chaoyang, Hu Jie, Nguyen Thomas, Qi Jin, Yang Banghua, Chen Dawei, Alshahrani Yousef, Zhou Yang, Tsai Andrew, Frush Todd, Goitz Henry
| 期刊: | Front Neurorobot | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Jun 30; 16:880073 |
| doi: | 10.3389/fnbot.2022.880073 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
