This paper provides exact analytical expressions for the first and second moments of the true error for linear discriminant analysis (LDA) when the data are univariate and taken from two stochastic Gaussian processes. The key point is that we assume a general setting in which the sample data from each class do not need to be identically distributed or independent within or between classes. We compare the true errors of designed classifiers under the typical i.i.d. model and when the data are correlated, providing exact expressions and demonstrating that, depending on the covariance structure, correlated data can result in classifiers with either greater error or less error than when training with uncorrelated data. The general theory is applied to autoregressive and moving-average models of the first order, and it is demonstrated using real genomic data.
Analytical Study of Performance of Linear Discriminant Analysis in Stochastic Settings.
阅读:4
作者:Zollanvari Amin, Hua Jianping, Dougherty Edward R
| 期刊: | Pattern Recognition | 影响因子: | 7.600 |
| 时间: | 2013 | 起止号: | 2013 Nov;46(11):3017-3029 |
| doi: | 10.1016/j.patcog.2013.04.002 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
