Improved adaptive EWMA control chart for process location with applications in groundwater physicochemical parameters and glass manufacturing industry.

阅读:6
作者:Arslan Muhammad, Anwar Syed Masroor, Lone Showkat Ahmad, Rasheed Zahid, Khan Majid, Abbasi Saddam Akbar
The adaptive exponentially weighted moving average (AEWMA) control charts are the advanced form of classical memory control charts used for efficiently monitoring small-to-large shifts in the process parameters (location and/or dispersion). These AEWMA control charts estimate the unknown shifts using exponentially weighted moving average (EWMA) or cumulative sum (CUSUM) control charts statistics. The hybrid EWMA (HEWMA) control chart is preferred over classical memory control charts to detect early shifts in process parameters. So, this study presents a new auxiliary information-based (AIB) AEWMA (IAEWMAAIB) control chart for process location that estimates the unknown location shift using HEWMA statistic. The objective is to develop an unbiased location shift estimator using HEWMA statistic and then adaptively update the smoothing constant. The shift estimation using HEWMA statistic instead of EWMA or CUSUM statistics boosts the performance of the proposed IAEWMAAIB control chart. The Monte Carlo simulation technique is used to get the numerical results. Famous performance evaluation measures like average run length, extra quadratic loss, relative average run length, and performance comparison index are used to evaluate the performance of the proposed chart with existing counterparts. The comparison reveals the superiority of the proposed control chart. Finally, two real-life applications from the glass manufacturing industry and physicochemical parameters of groundwater are considered to show the proposed control chart's implementation procedure and dominance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。