The heavy blooming of apple trees results in the inefficient usage of energy and nutritional material, and additional expenditure on fruitlet thinning is required to maintain fruit quality. A possible solution for controlling the fruit load on trees is the development of new cultivars that self-eliminate excess fruitlets, thus controlling yield. The aim of our study was to identify biological differences in apple cultivars in terms of blooming intensity and fruitlet load self-regulation. In total, 19 apple cultivars were studied in the years 2015-2017. The dynamics of fruitlet self-elimination, seed development in fruitlets and fruits, photosynthetic parameters, carbohydrates, and plant hormones were evaluated. We established that apple cultivars self-eliminating a small number of fruitlets need a lower number of well-developed seeds in fruit, and their number of leaves and area per fruit on a bearing branch are larger, compared to cultivars, self-eliminating large numbers of fruitlets. A higher carbohydrate amount in the leaves may be related to smaller fruitlet self-elimination. The amount of auxin and a high indole-3-acetic acid/zeatin ratio between leaves of cultivar groups with heavy blooming were higher than in cultivars with moderate blooming. A lower amount of abscisic acid was found in heavy-blooming cultivars during drought stress. All these parameters may be used as markers for the selection of different apple genotypes that self-eliminate fruitlets.
Potential Markers for Selecting Self-Eliminating Apple Genotypes.
阅读:5
作者:Starkus Aurelijus, Frercks Birute, Gelvonauskiene Dalia, Mazeikiene Ingrida, Rugienius Rytis, Bendokas Vidmantas, Stanys Vidmantas
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2021 | 起止号: | 2021 Aug 5; 10(8):1612 |
| doi: | 10.3390/plants10081612 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
