Powerful, scalable and resource-efficient meta-analysis of rare variant associations in large whole genome sequencing studies.

阅读:5
作者:Li Xihao, Quick Corbin, Zhou Hufeng, Gaynor Sheila M, Liu Yaowu, Chen Han, Selvaraj Margaret Sunitha, Sun Ryan, Dey Rounak, Arnett Donna K, Bielak Lawrence F, Bis Joshua C, Blangero John, Boerwinkle Eric, Bowden Donald W, Brody Jennifer A, Cade Brian E, Correa Adolfo, Cupples L Adrienne, Curran Joanne E, de Vries Paul S, Duggirala Ravindranath, Freedman Barry I, Göring Harald H H, Guo Xiuqing, Haessler Jeffrey, Kalyani Rita R, Kooperberg Charles, Kral Brian G, Lange Leslie A, Manichaikul Ani, Martin Lisa W, McGarvey Stephen T, Mitchell Braxton D, Montasser May E, Morrison Alanna C, Naseri Take, O'Connell Jeffrey R, Palmer Nicholette D, Peyser Patricia A, Psaty Bruce M, Raffield Laura M, Redline Susan, Reiner Alexander P, Reupena Muagututi'a Sefuiva, Rice Kenneth M, Rich Stephen S, Sitlani Colleen M, Smith Jennifer A, Taylor Kent D, Vasan Ramachandran S, Willer Cristen J, Wilson James G, Yanek Lisa R, Zhao Wei, Rotter Jerome I, Natarajan Pradeep, Peloso Gina M, Li Zilin, Lin Xihong
Meta-analysis of whole genome sequencing/whole exome sequencing (WGS/WES) studies provides an attractive solution to the problem of collecting large sample sizes for discovering rare variants associated with complex phenotypes. Existing rare variant meta-analysis approaches are not scalable to biobank-scale WGS data. Here we present MetaSTAAR, a powerful and resource-efficient rare variant meta-analysis framework for large-scale WGS/WES studies. MetaSTAAR accounts for relatedness and population structure, can analyze both quantitative and dichotomous traits and boosts the power of rare variant tests by incorporating multiple variant functional annotations. Through meta-analysis of four lipid traits in 30,138 ancestrally diverse samples from 14 studies of the Trans Omics for Precision Medicine (TOPMed) Program, we show that MetaSTAAR performs rare variant meta-analysis at scale and produces results comparable to using pooled data. Additionally, we identified several conditionally significant rare variant associations with lipid traits. We further demonstrate that MetaSTAAR is scalable to biobank-scale cohorts through meta-analysis of TOPMed WGS data and UK Biobank WES data of ~200,000 samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。