Instantaneous Hydrolysis of Methyl Paraoxon Nerve Agent Simulant Is Catalyzed by Nontoxic Aminoguanidine Imines.

阅读:3
作者:Darkwah Emmanuel Kingsley, Aryal Puspa, Zhang Chi, Musgrave Charles B 3rd, Goddard William A 3rd, Reddy V Prakash
Exposure to organophosphate-based nerve agents and pesticides poses health and security threats to civilians, soldiers, and first responders. Thus, there is a need to develop effective decontamination agents that are nonhazardous to human health. To address this, we demonstrate that instantaneous hydrolysis of methyl paraoxon (Me-POX), a nerve agent simulant, can be achieved in the presence of aminoguanidine imines at pH 10: ● the pyridine-4-aldehyde aminoguanidine-imine (1) and ● the 2,3-butanedione aminoguanidine-imine (2). The hydrolysis of Me-POX under these conditions is substantially faster than that of the state-of-the-art decontaminating agent, Dekon-139 (2,3-butanedione oxime, potassium salt). Furthermore, Dekon-139 shows adverse effects when applied on skin surfaces, making it of great interest to develop safer but effective decontaminating agents for neutralizing nerve agents and pesticides exposed to skin-surface areas. Our pharmaceutically relevant aminoguanidine derivatives serve as rather nontoxic and safe decontaminating agents for organophosphate-based nerve agents and pesticides. The hydrolytic degradation products of Me-POX by our aminoguanidine-based imines and Dekon-139 are pH dependent. At pH > 10, Me-POX is hydrolyzed to give dimethyl phosphate as the exclusive product, whereas at pH < 9, the major product of hydrolysis is methyl 4-nitrophenyl phosphate (M4NP). We applied Quantum Mechanics calculations to investigate the mechanism of this dramatically accelerated decontamination process. We predict that in the rate-determining transition state, both 1 and 2 stabilize the reaction center through hydrogen bonding. Compared to Dekon-139, the rate constants of the rate-determine steps (RDS) are predicted to be over 9,000 times larger for 1 and over 600 times larger for 2, explaining the improvement. Quantum Mechanics calculations rationalize the pH-dependent hydrolysis products of the Me-POX in the gas phase, and gauge-including atomic orbital (GIAO)-(31)P NMR chemical shift calculations confirm the experimental values.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。