Controlling the self-assembly of polyfunctional compounds in interpolyelectrolyte aggregates is an extremely challenging task. The use of macrocyclic compounds offers new opportunities in design of a new generation of mixed nanoparticles. This approach allows creating aggregates with multivalent molecular recognition, improved binding efficiency and selectivity. In this paper, we reported a straightforward approach to the synthesis of interpolyelectrolytes by co-assembling of the thiacalix[4]arene with four negatively charged functional groups on the one side of macrocycle, and pillar[5]arene with 10 ammonium groups located on both sides. Nanostructured polyelectrolyte complexes show effective packaging of high-molecular DNA from calf thymus. The interaction of co-interpolyelectrolytes with the DNA is completely different from the interaction of the pillar[5]arene with the DNA. Two different complexes with DNA, i.e., micelleplex- and polyplex-type, were formed. The DNA in both cases preserved its secondary structure in native B form without distorting helicity. The presented approach provides important advantage for the design of effective biomolecular gene delivery systems.
Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA.
阅读:6
作者:Yakimova Luidmila S, Nugmanova Aigul R, Mostovaya Olga A, Vavilova Alena A, Shurpik Dmitriy N, Mukhametzyanov Timur A, Stoikov Ivan I
| 期刊: | Nanomaterials | 影响因子: | 4.300 |
| 时间: | 2020 | 起止号: | 2020 Apr 17; 10(4):777 |
| doi: | 10.3390/nano10040777 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
