Screening for early Alzheimer's disease: enhancing diagnosis with linguistic features and biomarkers.

阅读:6
作者:Chou Chia-Ju, Chang Chih-Ting, Chang Ya-Ning, Lee Chia-Ying, Chuang Yi-Fang, Chiu Yen-Ling, Liang Wan-Lin, Fan Yu-Ming, Liu Yi-Chien
INTRODUCTION: Research has shown that speech analysis demonstrates sensitivity in detecting early Alzheimer's disease (AD), but the relation between linguistic features and cognitive tests or biomarkers remains unclear. This study aimed to investigate how linguistic features help identify cognitive impairments in patients in the early stages of AD. METHOD: This study analyzed connected speech from 80 participants and categorized the participants into early-AD and normal control (NC) groups. The participants underwent amyloid-β positron emission tomography scans, brain magnetic resonance imaging, and comprehensive neuropsychological testing. Participants' speech data from a picture description task were examined. A total of 15 linguistic features were analyzed to classify groups and predict cognitive performance. RESULTS: We found notable linguistic differences between the early-AD and NC groups in lexical diversity, syntactic complexity, and language disfluency. Using machine learning classifiers (SVM, KNN, and RF), we achieved up to 88% accuracy in distinguishing early-AD patients from normal controls, with mean length of utterance (MLU) and long pauses ratio (LPR) serving as core linguistic indicators. Moreover, the integration of linguistic indicators with biomarkers significantly improved predictive accuracy for AD. Regression analysis also highlighted crucial linguistic features, such as MLU, LPR, Type-to-Token ratio (TTR), and passive construction ratio (PCR), which were sensitive to changes in cognitive function. CONCLUSION: Findings support the efficacy of linguistic analysis as a screening tool for the early detection of AD and the assessment of subtle cognitive decline. Integrating linguistic features with biomarkers significantly improved diagnostic accuracy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。