Traffic signs detection is an important and challenging task in intelligent driving perception system. This paper proposes an improved lightweight traffic signs detection framework based on YOLOv5. Firstly, the YOLOv5's backbone is replaced with ShuffleNet v2, which simplifies the calculation complexity and reduces the parameters of backbone network. Secondly, aiming at the problem of inconspicuous traffic sign characteristics in complex road environment, we use the CA attention mechanism in this paper to improve the saliency of the object. Finally, aiming at the large-scale difference between the traffic signs and the high proportion of small objects, we design the BCS-FPN to fuse multi-scale features and improve the representation ability of the small-scale objects. The TT-100K dataset is also analyzed and the dataset is collated. We test on the collated TT-100K dataset for the improved YOLOv5 in this paper. And the results show that compared with YOLOv5s, the mAP of our algorithm is equivalent to that of YOLOv5s, and the speed is improved by 20.8%. This paper also has carried on the experiment on embedded devices, experimental results show that our framework in computing power less embedded devices has a better effect.
Improved lightweight YOLOv5 based on ShuffleNet and its application on traffic signs detection.
阅读:4
作者:Liu Liwei, Wang Lei, Ma Zhuang
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Sep 10; 19(9):e0310269 |
| doi: | 10.1371/journal.pone.0310269 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
