A reinforcement learning approach to improve the performance of the Avellaneda-Stoikov market-making algorithm.

阅读:7
作者:Falces Marin Javier, Díaz Pardo de Vera David, Lopez Gonzalo Eduardo
Market making is a high-frequency trading problem for which solutions based on reinforcement learning (RL) are being explored increasingly. This paper presents an approach to market making using deep reinforcement learning, with the novelty that, rather than to set the bid and ask prices directly, the neural network output is used to tweak the risk aversion parameter and the output of the Avellaneda-Stoikov procedure to obtain bid and ask prices that minimise inventory risk. Two further contributions are, first, that the initial parameters for the Avellaneda-Stoikov equations are optimised with a genetic algorithm, which parameters are also used to create a baseline Avellaneda-Stoikov agent (Gen-AS); and second, that state-defining features forming the RL agent's neural network input are selected based on their relative importance by means of a random forest. Two variants of the deep RL model (Alpha-AS-1 and Alpha-AS-2) were backtested on real data (L2 tick data from 30 days of bitcoin-dollar pair trading) alongside the Gen-AS model and two other baselines. The performance of the five models was recorded through four indicators (the Sharpe, Sortino and P&L-to-MAP ratios, and the maximum drawdown). Gen-AS outperformed the two other baseline models on all indicators, and in turn the two Alpha-AS models substantially outperformed Gen-AS on Sharpe, Sortino and P&L-to-MAP. Localised excessive risk-taking by the Alpha-AS models, as reflected in a few heavy dropdowns, is a source of concern for which possible solutions are discussed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。