LAF: Logic Alignment Free and its application to bacterial genomes classification.

阅读:7
作者:Weitschek Emanuel, Cunial Fabio, Felici Giovanni
Alignment-free algorithms can be used to estimate the similarity of biological sequences and hence are often applied to the phylogenetic reconstruction of genomes. Most of these algorithms rely on comparing the frequency of all the distinct substrings of fixed length (k-mers) that occur in the analyzed sequences. In this paper, we present Logic Alignment Free (LAF), a method that combines alignment-free techniques and rule-based classification algorithms in order to assign biological samples to their taxa. This method searches for a minimal subset of k-mers whose relative frequencies are used to build classification models as disjunctive-normal-form logic formulas (if-then rules). We apply LAF successfully to the classification of bacterial genomes to their corresponding taxonomy. In particular, we succeed in obtaining reliable classification at different taxonomic levels by extracting a handful of rules, each one based on the frequency of just few k-mers. State of the art methods to adjust the frequency of k-mers to the character distribution of the underlying genomes have negligible impact on classification performance, suggesting that the signal of each class is strong and that LAF is effective in identifying it.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。