Effect of Electrode Shape on Impedance of Single HeLa Cell: A COMSOL Simulation.

阅读:3
作者:Wang Min-Haw, Chang Wen-Hao
In disease prophylaxis, single cell inspection provides more detailed data compared to conventional examinations. At the individual cell level, the electrical properties of the cell are helpful for understanding the effects of cellular behavior. The electric field distribution affects the results of single cell impedance measurements whereas the electrode geometry affects the electric field distributions. Therefore, this study obtained numerical solutions by using the COMSOL multiphysics package to perform FEM simulations of the effects of electrode geometry on microfluidic devices. An equivalent circuit model incorporating the PBS solution, a pair of electrodes, and a cell is used to obtain the impedance of a single HeLa cell. Simulations indicated that the circle and parallel electrodes provide higher electric field strength compared to cross and standard electrodes at the same operating voltage. Additionally, increasing the operating voltage reduces the impedance magnitude of a single HeLa cell in all electrode shapes. Decreasing impedance magnitude of the single HeLa cell increases measurement sensitivity, but higher operational voltage will damage single HeLa cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。