Low-contrast or uneven illumination in real-world images will cause a loss of details and increase the difficulty of pattern recognition. An automatic image illumination perception and adaptive correction algorithm, termed as GLAGC, is proposed in this paper. Based on Retinex theory, the illumination of an image is extracted through the discrete wavelet transform. Two features that characterize the image illuminance are creatively designed. The first feature is the spatial luminance distribution feature, which is applied to the adaptive gamma correction of local uneven lighting. The other feature is the global statistical luminance feature. Through a training set containing images with various illuminance conditions, the relationship between the image exposure level and the feature is estimated under the maximum entropy criterion. It is used to perform adaptive gamma correction on global low illumination. Moreover, smoothness preservation is performed in the high-frequency subband to preserve edge smoothness. To eliminate low-illumination noise after wavelet reconstruction, the adaptive stabilization factor is derived. Experimental results demonstrate the effectiveness of the proposed algorithm. By comparison, the proposed method yields comparable or better results than the state-of-art methods in terms of efficiency and quality.
GLAGC: Adaptive Dual-Gamma Function for Image Illumination Perception and Correction in the Wavelet Domain.
阅读:4
作者:Yu Wenyong, Yao Haiming, Li Dan, Li Gangyan, Shi Hui
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2021 | 起止号: | 2021 Jan 27; 21(3):845 |
| doi: | 10.3390/s21030845 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
