This work aimed to use the Bayesian approach to discriminate 43 genotypes of Coffea canephora cv. Conilon, which were cultivated in two producing regions to identify the most stable and productive genotypes. The experiment was a randomized block design with three replications and seven plants per plot, carried out in the south of Bahia and the north of EspÃrito Santo, environments with different climatic conditions, and evaluated during four harvests. The proposed Bayesian methodology was implemented in R language, using the MCMCglmm package. This approach made it possible to find great genetic divergence between the materials, and detect significant effects for both genotype, environment, and year, but the hyper-parametrized models (block effect) presented problems of singularity and convergence. It was also possible to detect a few differences between crops within the same environment. With a model with lower residual, it was possible to recommend the most productive genotypes for both environments: LB1, AD1, Peneirão, Z21, and P2.
Multi-Environment and Multi-Year Bayesian Analysis Approach in Coffee canephora.
阅读:6
作者:Covre André Monzoli, da Silva Flavia Alves, Oliosi Gleison, Correa Caio Cezar Guedes, Viana Alexandre Pio, Partelli Fabio Luiz
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2022 | 起止号: | 2022 Nov 28; 11(23):3274 |
| doi: | 10.3390/plants11233274 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
